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The stochastic point processes formed by the zero crossings or extremal points of differentiable, stationary
Gaussian processes are studied as a function of their autocorrelation function. The properties of these point
processes are mapped to the space formed by the parameters appearing in the autocorrelation function, their
adopted form being sensitive to the structure of the autocorrelation function principally in the vicinity of the
origin. The distribution for the number of zeros occurring in an asymptotically large interval are approximately
negative-binomial or binomial depending upon whether the relative variance or Fano factor is greater or less
than unity. The correlation properties of the zeros are such that they are repelled from each other or are
“antibunched” if the autocorrelation function of the Gaussian process is characterized by a single scale size, but
occur in clusters if more than one characteristic scale size is present. The intervals between zeros can be
interpreted in terms of the autocorrelation function of the zeros themselves. When bunching occurs the interval
density becomes bimodal, indicating the interval sizes within and between the clusters. The interevent periods
are statistically dependent on one another with densities whose asymptotic behavior is governed by that of the
autocorrelation function of the Gaussian process at large delay times. Poisson distributed fluctuations of the
zeros occur only exceptionally but never form a Poisson process.

DOI: 10.1103/PhysRevE.77.031112 PACS number�s�: 02.50.Fz, 05.45.Df, 89.75.�k

I. INTRODUCTION

Quantifying the properties of the zeros of a Gaussian pro-
cess is of central importance to the topic of extremal statis-
tics which impacts on numerous applications in biological
�1–3�, engineering �4–6�, financial �7,8�, and physical �9–12�
sciences, in addition to seminal theoretical stimuli in pure
probability �13,14� and practical developments in applied
probability �15,16�. Consequently the subject has generated a
large, diverse and technical literature across the years, which
has been subject to three reviews �17–19�. Despite the topic’s
longevity, the generality that encompasses all its facets re-
mains elusive, which is indicative of the problems’ richness,
inherent subtleties, and the individual demands of the diverse
application areas. The essentials of the problem can be stated
simply enough: Given a Gaussian process x�t� with zero
mean, variance �2, and autocorrelation function ����
= �x�0�x���� /�2, what are the statistical properties of the
number of zeros that occur in an interval of length T, i.e.,
enumerating the instances and locations for when x�t�=0?
The zeros are an example of the way in which a discrete, or
point random process can be derived from an underlying
continuous variation. This illustrates the relevance of the
problem to the generation of, for example, pulselike phe-
nomenology that can be manifested by complex systems
�e.g. �20–22��—these being invariably nonlinear in character
and containing a hierarchy of disparate time or length scales,
and whose behaviors present significant challenges to model
and interpret. Because the process to be considered is Gauss-
ian, the multivariate joint statistics are prescribed in terms of
the function � alone, and it is the properties of this function
that influences principally the behaviors exhibited by and
derived from the process. If the derivative of the process
exists, then this is also Gaussian, hence the statistical prop-
erties of the zeros are also those of the turning points, which
explains the relevance to extremal problems. Various ancil-

lary problems attend the statistics of the zeros, for example
the distribution of intervals between consecutive zeros or the
“return probability”—which is a continuous random variable
with stochastic process that is distinct from the underlying
Gaussian process. Recent applications of this concept in-
clude, inter alia, characterizations of behaviors in sandpiles
�23,24�, finance �25�, and networks �26�. The problem of
enumerating zero crossings has a wider currency which con-
tinues to broaden, latterly being applied to the “nodal sets” of
solutions to the Schrödinger equation, this being proposed as
a method for classifying quantum chaos �27�.

The seminal researches of Rice �28� and Kac �29� estab-
lished, inter alia, that the integer number of zeros N occur-
ring in an interval of length T has mean value �N�= r̄T, where
r̄= �−���0��1/2 /� is the rate. This expression shows immedi-
ately that for the mean to exist, the autocorrelation function
must be twice differentiable at the origin, this condition be-
ing related to the smoothness of the trace of the process.
Consequently, continuous and differentiable processes can-
not have an autocorrelation function with a cusp singularity
at the origin—if they do, they describe fractal processes,
which are characterized by a hierarchical “inverse cascade”
to progressively smaller scales where the number of zeros
fails to be resolved by magnification. Rice’s result stimulated
an entire industry, whereby the conditions for its validity
have been relaxed progressively, this being essayed in what
is largely a highly technical literature �13,30,31�, and latterly
generalized to processes that are functions of a Gaussian pro-
cess �32–35�.

The fluctuations of the zeros have received considerably
less attention. An investigation of the second factorial mo-
ment �N�N−1�� �4,36�, showed that this quantity depends on
the global values of � and its first and second derivatives in
addition to those values at the origin. The expression for the
second factorial moment can only be evaluated by quadra-
ture, except for a special case �37�, or for small values of T
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as shown in Sec. II of this paper. Whilst formal expressions
for the generalizations to higher order moments can be writ-
ten down �31,38�, these are of little practical value because
of their complexity. This paper will, in part, give a detailed
analysis of the second factorial moment of the zero crossings
and its alternative formulation in terms of the Fano factor
�39� as functions of the autocorrelation function of the
Gaussian process, and it will be shown here that the fluctua-
tions of the zeros are sensitive to the detailed structure of �
near the origin and to a lesser extent its behavior for asymp-
totically large delay times.

The variation that is achievable in the second factorial
moment prompts questioning what is the actual distribution
for the number of zero crossings that occur in an interval,
and it is the answer to this that forms the principal novelty of
this paper. It will be shown from numerical realizations of
Gaussian processes, that the distribution for the number of
zeros that occur in an interval of size T are, in the limit of
large values of T, approximately described by the binomial
or negative binomial distributions depending upon whether
the Fano factor is less or greater than unity, respectively.
Only for the special case when the Fano factor is identically
unity are the zeros approximately Poisson distributed. It is
important to stress that the number of zero crossings is nec-
essarily a discrete random variable and that properties of the
stochastic process that is associated with the zeros do not
have a continuum analogue. One such concept is antibunch-
ing and bunching, by which is meant the zero crossings are
respectively repelled or attracted to one-another. This notion
follows from an analysis of the autocorrelation function for
the zeros themselves and the probability density function of
the times between successive crossings—the interevent time.
Both of these quantities are influenced principally by the
structure of the autocorrelation function of the Gaussian pro-
cess near the origin.

Interevent time is a residue of the zero or level crossings
of a process, and is closely related to the concept of “persis-
tence” which measures the time that a process is above a
prescribed threshold �e.g. �9–12��. The general literature as-
sociated with the generic properties of interevent times is
also mature �e.g. �18��, with few analytical results. A notable
exception is the result obtained in �40�, which is particular
for the autocorrelation function having the specific form

���� =
3

2
exp�− ���

	3

�1 −

1

3
exp�− 2���

	3

� �1�

that is exponentially bounded. This process has an interevent
time density function expressible in terms of elliptic integrals
that is unimodal, peaking at zero and having an exponential
tail. This analytical result serves as one of the benchmarks
used for validating the numerical methods to be employed in
this paper. Interevent times were investigated for processes
with autocorrelation function having a power-law asymptote
�41,42�. It was found that the asymptotic form of the density
of interevent intervals depended on the power-law index �,
being exponential when ��1 and a stretched exponential
when 0���1, the degree of stretching being the index.
This result is in accord with earlier theoretical work on the

slightly different problem for the asymptotic behavior for
their being no crossings in the interval �43�. However, it is a
consideration for the process of the zero crossings them-
selves that comprises the principal theme of this paper, the
interval distributions being subsidiary to this problem.

This paper will explore the sensitivity of the zero-crossing
process to the smoothness properties and scale sizes associ-
ated with the underlying Gaussian process that generates
them. The contents of the paper are organized as follows.
Section II evaluates the second factorial moment of the zeros
for three autocorrelation models and discusses why the Fano
factor is a more sensitive and appropriate measure to use for
gauging their fluctuations. The parameters appearing in the
autocorrelation functions create a landscape in which the
properties of the zeros change and can be classified. Section
III presents the results of simulations of Gaussian processes
formed with three model autocorrelation functions from
which are obtained the point processes of the zeros. The
measures used to characterize these are the probability dis-
tribution of the zeros themselves, their autocorrelation func-
tion and the probability density for the interevent intervals.
The characterization of different types of behavior is identi-
fied with specific regions of the parameter space introduced
in Sec. II. A summary and discussion forms the concluding
Sec. IV. Technical details concerning the power spectra as-
sociated with the Gaussian processes are assigned to the Ap-
pendix.

II. CHARACTERIZATION OF PROCESSES
BY THEIR SECOND MOMENT

This section evaluates the second factorial moment of the
number of zero crossings of a Gaussian random process oc-
curring in an interval of size T as a means to gauge of their
fluctuations. These fluctuations are sensitive to the form
adopted by the autocorrelation function of the Gaussian pro-
cess and this susceptibility will be explored through invoking
three autocorrelation models that possess different smooth-
ness, scale-size, and correlation-memory properties. The sec-
ond factorial moment was first derived in �36� and was sub-
sequently rewritten in a more usable form by Middleton �4�
as

�N�N − 1�� =
2T2

�2 
0

1

�1 − y�
�A2 − B2�1/2

�1 − �2�3/2

	�1 +
B

�A2 − B2�1/2arctan� B

�A2 − B2�1/2
�dy ,

�2�

where

A = − ���0��1 − �2�yT�� − ��2�yT� ,

B = ���yT��1 − �2�yT�� + ��yT���2�yT� ,

with � the autocorrelation function and the prime represent-
ing differentiation with respect to its argument. It is not usu-
ally possible to evaluate Eq. �2� analytically, although this
was achieved by Miroshin �37� for the same autocorrelation
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function Eq. �1� employed by Wong �40� to yield a numerical
value of �N�N−1���0.1287. We are able to reduce consid-
erably the complexity of Eq. �2� in the small T limit. Con-
sider a “subfractal” �44,45� autocorrelation function with ex-
pansion near the origin given by

���� = 1 −
��r̄�2

2
�2 + b���2+
 + ¯ , 0 � 
 � 2, �3�

where r̄ is the mean zero rate, given by Rice �28�, and b and

 are parameters that allow the behavior of the autocorrela-
tion function to be manipulated. Substitution of Eq. �3� into
Eq. �2� and expanding about T=0 yields

�N�N − 1�� � � �4 − 
2�1/2



+ arctan� 


�4 − 
2�1/2
�
	

2�b�
�3r̄

T1+
 + O�T1+2
� . �4�

The normalized second factorial moment

N�2� =
�N�N − 1��

�N�2 .

therefore scales as T
−1. Note that, if 
=1, then N�2� is in-
dependent of T �44�.

Although this analysis is only valid for values of T�1, it
does show that it is possible to characterize some behavior of
the zeros in terms of the parameters appearing in the auto-
correlation function in a closed form. Whilst the scaling of
the second moment for small values of T is interesting, it is
desirable to investigate how the fluctuations behave for
larger values of T. This is because the second factorial mo-
ment is defined by an integral, which is indicative of a global
dependence on T. A cursory inspection of Eq. �2� shows that
the form of �N�N−1�� for T�1 is dominated by the T2 pref-
actor, indeed in this limit

�N�N − 1�� �
2T2

�2 
0

1

�1 − y��− ���0��dy + O�T�

= �r̄T�2 + O�T�

and so

�N�N − 1�� � r̄2T2 + YT + Z ,

where Y and Z are functions of the autocorrelation function
and its derivatives, whose values are embedded in the inte-
gral expression �2�. Consequently, the normalized second
factorial moment tends to unity in the limit of large T. This
can be contrasted with the behavior of the Fano factor �39�,
or variance of the zeros relative to their mean, defined by

F�T� =
�N2� − �N�2

�N�
=

�N�N − 1��
�N�

− �N� + 1,

from which it can be seen that

F�T� �
Y

r̄
+ 1 �5�

when T�1. The Fano factor can be considered to be a mea-

sure of how Poissonian are the number fluctuations, for
when F=1 the variance equals the mean, which is character-
istic of Poisson statistics. A comprehensive discussion of the
use of the F for characterizing discrete fluctuation phenom-
ena can be found in �46�. The distribution of the zeros can be
said to be super-Poissonian when F�1 or sub-Poissonian
when F�1. It evidently follows from Eq. �5� that the Fano
factor tends to a limit that is unity only when Y �0. Thus the
Fano factor is a more sensitive discriminator of the fluctua-
tions of the zeros than is the normalized second factorial
moment.

To explore the effects that changes in the autocorrelation
function � have on both the value of F and the behavior of
the zeros, we consider three models. The first of these is a
modification to the exponentially bounded Gaussian autocor-
relation function:

�1��� = �1 + b� ���
L

2+
�exp�−

���2

2L2
 , �6�

where b and 
 are parameters and L is the correlation length.
Note that Eq. �6� contains two intrinsic scale sizes, the first
characterizing the exponential cutoff l1�L and the second
l2�L / �b�1/�2+
� associated with the prefactor, whose value
can be greater or less than L depending upon the size of b
and 
. However, b and 
 are not entirely arbitrary because
���� must decrease away from the origin and ����� � �1 other
than at the origin �47�. All values of b and 
 that are dis-
cussed subsequently are selected to conform to these con-
straints. Furthermore, the power spectrum must be a positive
definite quantity and this is the case if b�0; therefore, this
model, and the others to be considered, cannot treat anticor-
related processes �see the Appendix�. The parameter 
�0
affects the smoothness of the trace of any realization as can
be seen from the expansion of �6� close to the origin

�1��� � 1 −
1

2
� ���

L

2

+ b� ���
L

2+


+
1

4
� ���

L

4

+ ¯ , �7�

so that r̄=1 / ��L�. Note that the fourth derivative at the ori-
gin is singular when 0�
�2 corresponding to any trace
formed from a realization of the process having a derivative
that is continuous but not differentiable. For this reason the
model �6� is referred to as being “subfractal”. If b�0 then �1
has a single scale and is infinitely differentiable correspond-
ing to a smooth process.

Using Eq. �6� in Eq. �2� enables a range of processes with
different Fano factors to be determined in the limit T�L as

 and b are changed, resulting in the contour plot shown in
Fig. 1�a�. The contour for which F���=1 is highlighted on
the figure and evidently a range of sub- and super-Poissonian
behaviors is achievable. The line b=0 corresponds to the
purely Gaussian autocorrelation function with F����0.57.
If the second characteristic scale size becomes smaller than
L, then traces formed by realizations of the process become
more crenellated. A cluster of zeros will occur if, on average,
there are two or more zeros in a characteristic length, and
this happens if l2�L / �b�1/�2+
�2L, i.e., if �b � �1 /2�2+
�,
and the locus of this curve is shown by the dotted lines on
Figs. 1�a� and 1�b�. Below the line only a single scale occurs
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in a correlation length; above the line there is an additional
characteristic scale size. This is exemplified by the two real-
izations of the stochastic process that are shown in Fig. 2
which correspond to points in Fig. 1�a� that lie on the same
contour F=0.9 but on either side of the two-scale line, and
are denoted on the figure by the triangle and the asterisk.
These realizations therefore have identical values for the
mean value of the zero crossings and for their Fano factor
F=0.9 but that shown in Fig. 2�a� has a single scale size
associated with it, whereas Fig. 2�b� has two scales, which
results in its more undulating appearance. Note however that
although the trace shown in Fig. 2�b� has more random “os-
cillations”, the slope of the trace shown in Fig. 2�a� is more
erratic. This realization corresponds to a smaller value of 


which therefore has more pronounced subfractal characteris-
tics, which we shall describe subsequently as “jitter”.

The second model is a modification of LCR noise �4� that
has a similar parametrization as the model for �1,

�2��� = �1 +
���
L

+ b� ���
L

2+
�exp�−

���
L

 �8�

but is characterized by a longer correlation “memory” by
virtue of the exponential rather than the Gaussian tail. The
role of 
 and b is as before: To establish an additional scale
size and to imbue subfractal characteristics for when 0�

�2. The expansion of this model for small delay times al-
ways contains a cubic term:

�2��� � 1 −
1

2
� ���

L

2

+ b� ���
L

2+


+
1

3
� ���

L

3

+ ¯ , �9�

and this is identical with Eq. �7� up to order �2+
 if 0�

�1. The map of the Fano factor is calculated using Eq. �2�
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FIG. 1. �Color online� Contour plot of the Fano factor of the
zeros of the Gaussian process. The plot shows F�10000L�, which
approximates F���, as a function of b and 
, which parametrize the
autocorrelation function given by �a� Eq. �6� and �b� Eq. �8�. The
thicker contour corresponds to F���=1, and the colored symbols
denote the values used in subsequent simulations. The dotted line
marks where �b � =1 /2�2+
�; above this line two scales are present;
below the line only a single scale.
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FIG. 2. Fragments of realizations of x�t� having the same mean
and Fano factor F=0.9 for the number of zero crossings but with �a�

=0.5 and �b� 
=1.5. The additional scale size is clearly evident in
�b�. The units of the x�t� axis are arbitrary but identical in both
realizations.
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and shown in Fig. 1�b�. Notice that the Fano factor is always
greater than unity principally because of the longer correla-
tion memory associated with this model. The symbols on the
figure refer to values used in subsequent simulations.

The final model for the autocorrelation function that will
be considered has a much longer decay than the Gaussian
and LCR models. Recent work �41,42� has examined the
asymptotics of interevent density functions for the zeros of a
Gaussian and non-Gaussian processes with autocorrelation
function having a power-law asymptote. The model we adopt
has the form

�3��� = �1 +
1

�
� �

L

2�−�/2

, �10�

whose expansion about the origin is

�3��� � 1 −
�2

2L2 + �1

8
+

1

4�

 �4

L4 + ¯ ,

but with asymptote ��−�. A key difference between this
model and the others considered in this paper is that it is
smooth to all orders and has a well defined single character-
istic scale size despite the power-law asymptote. This is be-
cause there is an inner scale, as revealed by the factor “1” in
Eq. �10�, which ensures that the zeros have well-defined mo-
ments whose values are not dependent upon resolution size.
Note that, as �→�, �3���→exp�−�2 /2L2�, which is model
�6� with b=0.

Figure 3 shows F��� on log-log axes as a function of �,
which can be less or greater than unity and is monotonically
decreasing with increasing �. The symbols correspond to the
values of � used in the subsequent simulations. Note that a
range of values of F��� can be achieved by slight variations
in the index when ��1. Note that F���=1 when ��1.31.
For ��1, the value of F��� tends to the Gaussian value of
0.57, as expected from the form of Eq. �10� in this limit.

The Fano factor gives an indication of the fluctuations of
the zeros but does not indicate how they evolve as a process.
To achieve this objective requires simulating the process
since no analytical results of sufficient generality exist. This
is carried out in Sec. III.

III. SIMULATION RESULTS

Gaussian random processes may be simulated by con-
volving Gaussian random numbers with a prescribed auto-
correlation function. The convolution can be performed di-
rectly or by a spectral technique �48� and the latter method
enables fast Fourier transforms �FFT� to be deployed to ad-
vantage, thereby decreasing significantly the number of op-
erations required. For a realization of length M, the direct
method needs �M2 calculations compared with �M log M
for the spectral method. The direct method is particularly
expensive to use for power-law correlation functions. The
direct and spectral methods can always be employed on al-
lowable autocorrelation functions, i.e., those with positive
power spectra. Extreme care must be exercised when using
nonstandard autocorrelation functions such as those given by
Eqs. �6� and �8�, because both these violate this condition
when b is negative. Further discussion on this matter can be
found in �49� and the Appendix.

For the Gaussian and LCR models we formed 500 000
independent realizations each of length 100 000 unit inter-
vals; this is an adequate length because of the exponential
outer scale of the autocorrelation functions, which was taken
to be L=100. The zeros of the processes are located and the
resulting statistics, when averaged over all realizations, have
been verified by comparison with the few known analytical
results, comprising the mean �N� from Rice �28�, the second
factorial moment �N�N−1�� from Steinberg �36�, and an in-
terval distribution from Wong �40�. The correlation length
can be interpreted as the resolution of the process: increasing
it allows the process to be resolved in more detail but would
require more points in order to see the same number of
events; for example, the number of zeros. It follows that the
number of zeros in a time T is inversely proportional to L, as
verified by Rice’s formula. For each realization, the follow-
ing quantities were determined from the data.

�1� The discrete distribution of the zeros occurring in an
interval of length T=1000L, which is sufficiently long for
moments of the distribution to approximate adequately the
theoretical values of F��� given in the contour plots.

�2� The continuous probability density function q��� for
the intervals between consecutive zeros, q���d� being the
probability of finding an interval in the range � to �+d�.

�3� The autocorrelation function of the zeros themselves.
The simulations are performed in discrete time with a

temporal resolution �t=1 and with L chosen to be suffi-
ciently large so as to ensure that there is at most one zero in
the interval �t so that all zero crossings are counted. Values
of L in the range 10�L�100 are sufficient to achieve this;
the lower value being appropriate for the completely smooth
process defined by �3, the upper value being suitable for the
subfractal models. The autocorrelation function of the zeros
is formed from an ensemble average over K realizations of
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FIG. 3. �Color online�. Plot of the Fano factor of the zeros of the
Gaussian process correlated with �3. The plot shows F�100000L�,
which approximates F���, as a function of the index �. The sym-
bols correspond to the values of � used in the simulations.
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the process. The values of K required to achieve convergence
with the theoretical values of the Fano factor obtained from
Eq. �2� are 50 000 for �1 and �2, and 1.5	106 for �3. Let
Nk���t�� denote the number of zeros from the kth realization
of the process that occurs in an interval ��t�that is located at
t=m�t along the time axis. The autocorrelation function of
the zeros �N�t�N�t+����C��� is determined from

C��� = lim
K→�

1

KM
�
k=1

K

�
m=1

M

Nk���m�t��Nk���m�t + ��� .

Note that as the separation time � becomes larger than the
characteristic fluctuation time of the process, the number of
zeros in the intervals become independent of each other and
so

C��� = r̄2,

where r̄=1 /�L is the mean number of zeros in a resolution
interval �t. The normalized autocorrelation function is

C�2���� =
C���

r̄2 ,

and has the property that C�2�→1 for ��1. When C�2��1
the zeros are antibunched, or repelled from each other,
whereas when C�2��1 the zeros are bunched or clustered. In
all subsequent figures featuring C�2���� and q���, the delay
time � and random variable � are measured in units of the
correlation length L.

A. Modified Gaussian model

Figures 4�a�–4�d� shows the probability distribution for
the number of zeros for a selection of 
-b pairs that are
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FIG. 4. �Color online� Probability distributions p�N� for the number of zero crossings of a Gaussian process generated with autocorre-
lation model �1 occurring in an interval of length T=1000L. The parameter 
 is fixed at 0.5 with �a� b=0.051, �b� b=0.140, �c� b=0.167,
and �d� b=0.216, which correspond to F���=0.7, F���=1, F���=1.1, and F���=1.3, respectively. The solid line shows a fit with �a� the
binomial distribution, �b� the Poisson distribution, and �c� and �d� the negative-binomial distribution; the dotted line in each figure is the
Gaussian density function with the same mean and variance. All figures are simulated with L=100 and averaged over 500 000 realizations.
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located in different parts of the map of Fig. 1�a�. The sym-
bols used in Fig. 4 are replicated by the points in Fig. 1�a�.
When F�1, the distribution for the number of zeros occur-
ring in the interval T is approximately binomial, which when
parametrized in terms of F and �N� has the form

pb�N� =
�!

N ! �� − N�!
F�−N�1 − F�N,

where �= �N� / �1−F� and this theoretical model fit is shown
by the full curve in Fig. 4�a�. Also shown by the dotted line
for comparison is the Gaussian density function with the
same mean and variance, although it should be borne in mind
the number of zero crossings is a discrete quantity and so
only discrete probability distributions are appropriate de-
scriptors of their fluctuations. A simple interpretation for F in
this instance is that it represents the probability of obtaining
a zero in an interval of length ���t. If F�1, the distribution
of the zeros can be approximated by the negative binomial
distribution, which when written in terms of F given by

pn�N� =
�� − 1 + N�!
N ! �� − 1�!

F−��1 −
1

F

N

,

where now �= �N� / �F−1�and this theoretical model fit is
shown by the full curves in Figs. 4�c� and 4�d�, where again
the Gaussian density is shown by the dotted line for com-
parison. Here it can be seen that the Gaussian distribution is
less accurate than the negative-binomial model in the ex-
treme tails, and fails to capture the skewness of the distribu-
tion. When F=1, the distribution of the zeros can be approxi-
mated by the Poisson distribution,

pp�N� =
�N�N

N!
exp�− �N�� ,

and this model fit is shown by the full curves in Fig. 4�b�.
The Poisson can be obtained as the unique discrete limiting
distribution of the binomial or negative-binomial distribu-
tions as F→1.

A common “figure of merit” for determining how closely
a model distribution matches data is the chi-squared mea-
sure,

�2 = �
N=1

m
�fN − p�N��2

p�N�
, �11�

where fN are the measured frequencies of obtaining N zeros
and p�N� are the expected frequencies according to the cho-
sen model distribution. When Eq. �11� is used to assess the
goodness of fits of the binomial, negative binomial, Poisson
and Gaussian distributions, denoted �b

2, �n
2, �p

2, and �g
2, re-

spectively, we find that when F=0.7 �the black markers�,
then �b

2�200, �p
2 �1.2	103, and �g

2�310. This shows that
the binomial distribution is the closest to the data of the
three. When F=1.1 �denoted by the red markers�, then �n

2

�410, �p
2 �740, and �g

2�1.25	103, and for F=1.3 �de-
noted by the blue markers�, then �n

2�200, �p
2 �900, and

�g
2�1.56	103, so that the negative binomial distribution is

the best fit for when F�1. When F=1, however, �b
2, �n

2, and
�p

2 all result in �2�500, indicating that the Poisson distribu-

tion is the most appropriate fit; the corresponding value for
the Gaussian fit is �g

2�1.25	103. Figures 5�a� and 5�b�
shows C�2���� for the same points that were featured in the
foregoing discussion together with the interevent probability
densities shown in Figs. 5�c� and 5�d�. Consider together
Figs. 5�a� and 5�c�, which are for 
=1 /2 and b increasing
from the sub- to the super-Poissonian region whilst simulta-
neously traversing the curve between one and two scales.
The point b=0.051, denoted by circles, occurs in the single-
scale sub-Poissonian region with F�1, and b�22+
. The
autocorrelation is largely �1 �denoting anticorrelation�, with
a shallow and broad maximum located at ��2L. Any corre-
lation is weak beyond ��5L. The interevent density corre-
sponding to this is unimodal, the location of the peak coin-
ciding approximately with the maximum in the correlation
function. This peak is indicative of the mean spacing be-
tween the zeros, which in this case are isolated from each
other. The tail of the density is exponential—a feature com-
mon to all examples using this model. The value b=0.167,
denoted by squares in the figures, occurs in the super-
Poissonian region but is located in the proximity of the two-
scale boundary curve. The correlation function is greater
than unity for small delay times, falling below one for 0.5
� /L2.5 and becoming essentially uncorrelated thereaf-
ter. The corresponding interevent time density remains uni-
modal but has filled toward the origin, which is symptomatic
of a wider range of shorter-valued interevents being present.
Hence the zeros have less of a tendency to be isolated from
each other, there being an incipient trend toward clustering.
The point b=0.216 is denoted by the diamond-shaped sym-
bol and also occurs in the super-Poissonian region but is
located in the two-scale region where b�22+
. The values
for � where the correlation function is greater than unity has
broadened out from the origin, and the region where it is less
than one narrowed. The interevent density has evolved into a
bimodal function, the peak closest to the origin correspond-
ing to intervals within a cluster of zeros and the second peak
representing the interval between clusters. The intracluster
peak is a maximum at the origin indicating that zeros can
occur in close proximity to each other. This trend toward
shorter intervals within a cluster is a consequence of the
Gaussian process being affected by the subfractal jitter in
this region in of the 
-b plane. Another indicator of this
smoothness property is that all the autocorrelation functions
decrease away from the origin irrespective of whether they
are positively or anticorrelated. Contrasting all the densities
in Fig. 5�c�, note that second peak occurs at progressively
larger values of � /L, indicating that as F increases the clus-
ters of zeros are moving further apart, whilst the intervals
between zeros within a cluster get progressively shorter. Fig-
ures 5�b� and 5�d� reveal a complementary picture, but one
which differs subtly in detail due to the processes being in a
region of 
-b space that correspond to smoother realizations.
All of these results are for 
=1.5 with the two-scale region
being crossed as b increases. The unaltered features are the
existence of a unimodal interevent density coupled with a
single peaked autocorrelation in the single scale region cor-
responding to b=0.07 as shown by the crosses, and bimodal
densities with double-peaked autocorrelation functions in the
two-scale region for the two other examples. Where the re-
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sults differ is that all the autocorrelation functions now in-
crease away from the origin and that the first peak of the
interevent densities is displaced from the origin indicating
the intervals within a cluster have themselves become sepa-
rated. In all these results the principal features of the corre-
lation function and interevent densities occur at the similar
values of delay time or interval when both measured in units
of L. Hence the zeros are essentially never statistically inde-
pendent of each other except at large delay times. It is worth
stressing that on the contours F=1, although the distribution
of the zeros is described by the Poisson distribution, they do
not form a Poisson process which requires independent in-
tervals with exponential distribution. As the F=1 contour is
followed, the process moves through various regimes as 

increases. First a single-scale regime whose value is charac-
teristic of the distance between the zeros but the subfractal
“jitter” is of insufficient magnitude to bring the zeros closer

together. This passes into a two-scale region, where a ten-
dency emerges for the zeros to cluster together, each cluster
becoming separated from the next. This is succeeded by a
smoother two-scale region where the zeros form clusters, but
the zeros are well separated within each cluster.

B. Modified LCR model

Processes were also simulated using Eq. �8� as a model
for the autocorrelation function. The principal similarity is
that the zeros are well approximated by the negative bino-
mial distribution �F����1 for this model�. Figure 6 shows
the resultant inter event densities of the zeros for a selection
of points in the 
-b plane. These results exhibit the same
characteristics as seen for the previous model but the indi-
vidual features are less prominent. This is because they are
dominated by the subfractal jitter caused �at least� by the
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FIG. 5. �Color online� �a� Normalized autocorrelation function C�2� of the zeros of Gaussian processes correlated with �1 and 
=0.5,
plotted as a function of the delay time in correlation lengths � /L. The circles, squares, and diamonds correspond to values of b equal to
0.051, 0.167, and 0.216, respectively. In �b�, the value of 
=1.5 and the plus signs, stars, and crosses correspond to values of b equal to
0.070, 0.148, and 0.263, respectively. In �c� and �d�, the normalized interevent densities of the zeros of the Gaussian process are shown,
where the symbols correspond to the same values of b as featured in �a�. The densities have been scaled so that they may be distinguished.
All figures are simulated with L=100 and averaged over 500 000 realizations.
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always present cubic term in the autocorrelation function,
whose effect has a more persistent memory by virtue of the
exponential rather than Gaussian tail. In Fig. 6�a�, 
=0.5 and
the circles, squares, and diamonds correspond to values of b
equal to 0.004 �F���=1.2�, 0.300 �F���=2.5�, and 0.695
�F���=8.6�, respectively. The selected values of b fall on
either side of the two-scale boundary curve. The density
function for the smallest value of b is similar in form to the
equivalent case shown in Fig. 5�c�, being unimodal with
peak value displaced very slightly from the axis after which
the exponential tail becomes established. Significantly, the
density function does not fall to zero at the origin, so there
are a range of small interval sizes within the scale character-
izing the modal value, this being an indication of the most
likely spacing between the zeros. The intermediate value of b

is located ostensibly in the two scale region, though this is
not particularly evident from a first inspection of the density
function. This function is unimodal with peak on the axis,
having a sharp decline over two correlation lengths, followed
by a plateau of width 4L and then an exponential tail, but
with different characteristic scale size compared with that
near the origin. Hence there are two distinct scale sizes that
characterize the behavior. The zeros therefore do fall into a
hierarchy of clusters, but it is substantially influenced by the
strong subfractal effect that causes erratic changes in the di-
rection of a realization rather than changes in its value. The
last value of b is selected to illustrate that density function
does eventually become bimodal, the first peak being on axis
and the second occurring at 2L. The correlation functions for
the zeros are not shown because their interesting features
reflect essentially the same information, as was seen in Figs.
5�a�–5�c�.

In Fig. 6�b�, 
=1.5 and the plus signs, stars, and crosses
correspond to values of b equal to 0.004 �F���=1.2�, 0.220
�F���=2.5�, and 0.275 �F���=3.3�, respectively. These
points occur in the region of the 
-b plane corresponding to
smoother realizations than those shown in Fig. 5�a�, but
which are rougher than those shown in Fig. 6�d�. The form of
the density functions for the smallest and intermediate values
of b are very similar to the equivalent plots in Fig. 5�d�. The
final plot shows the first semblance of a bimodal distribution
where, significantly, the first peak is now displaced from the
axis, as was the case in Fig. 5�d�.

C. Power-law model

This model given by Eq. �10� requires significantly longer
and more �1.5	106� realizations to achieve the required ac-
curacy for the mean and Fano factor. It is fortunate that the
Fourier method can be used for this model since performing
such long and so many realizations by the direct method
would prove to be computationally onerous. It is important
to ensure that the autocorrelation function decays sufficiently
close to zero over the realization length. When ��1 �F
�1� it is found that realizations of length 104L with a value
L=10 is sufficient but that this must be increased to 105L
when �=0.8 �F�1�. As before, the distribution of the zeros
is negative binomial, Poisson, or binomial, according to
whether the Fano factor exceeds ��=0.8�, equals ��
=1.305�, or is less than unity ��=4.113�. Figure 7 shows the
autocorrelation functions and inter event densities for these
three examples which accord with the smooth, single-scale
behaviors as described in the discussion that accompanies
Figs. 5�b� and 5�d�. Where they differ is in the asymptotic
behavior of the correlation function and interevent densities.
There is residual correlation at long delay times; the tail of
the interevent density is a stretched exponential exp�−���
when ��1, as reported elsewhere �41,42�. Thus the long
memory effects that characterize the Gaussian process be-
come manifested in the attendant correlation behavior of the
zeros.

IV. SUMMARY AND DISCUSSION

This paper has investigated the stochastic process formed
by the zeros or stationary points of Gaussian random pro-
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FIG. 6. �Color online� Normalized interevent density functions
of the zeros of Gaussian processes correlated with �2, plotted as a
function of the delay time in correlation lengths � /L. In �a�, 

=0.5 and the circles, squares, and diamonds correspond to values of
b equal to 0.004, 0.300, and 0.695, respectively. In �b�, 
=1.5 and
the plus signs, stars, and crosses correspond to values of b equal to
0.004, 0.220, and 0.275, respectively. All figures are simulated with
L=100 and averaged over 500 000 realizations.
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cesses that are generated from three classes of autocorrela-
tion function. These point processes exhibit a range of be-
haviors that can be characterized according to their location
in the landscape charted by the parameters that affect the
autocorrelation function. The results of this paper are sum-
marized in Table I, together with results that pertain to other
aspects of this problem that have appeared elsewhere.

This paper has demonstrated that there are three principal
qualities that affect the process formed by the zero crossings.

�i� The Fano factor. This depends on the global properties
of the autocorrelation function of the Gaussian process via
Eq. �2� and influences the distribution of the zeros.

�ii� The smoothness of the underlying Gaussian process.
Whether the process has subfractal characteristics which in-

fluence the propensity for the zeros to form into clusters and
affects their temporal evolution as manifested in their auto-
correlation function and inter event probability densities.

�iii� The existence of multiple scales of the underlying
Gaussian process. This influences whether the cluster of ze-
ros are themselves clustered which is manifested by oscilla-
tions in the autocorrelation function and bimodal interevent
probability densities.

We have concentrated on models of autocorrelation func-
tion for the Gaussian processes that encapsulate many of the
behaviors seen in practice. The statistical behavior of the
zeros is affected principally by the structure of the autocor-
relation function in the vicinity of the origin. The first model
is a two-scale modified Gaussian function that is subfractal
when 0�
�2. The parameter b affects the second scale
size. The second two-scale model is that for modified LCR
noise whose principal differences are that there is always a
cubic term in the expansion of the autocorrelation function
about the origin and the longer correlation memory that has
an exponential rather than Gaussian falloff for large delay
times.

The locus for where the second scale size becomes
smaller than the outer scale is shown in Fig. 1; above this
line the zeros tend to form into bunches whereas below the
line the converse is the case. Within any bunch, the zeros
form subclusters if 
�1 or are repelled from each other if

�1, which is a gauge of the smoothness of the Gaussian
process.

Notice that any contour for which F�1 passes through
the antibunching to bunching regimes as 
 is increased
whereas this is not necessarily the case for some contours
with F�1. Prominent features in the autocorrelation func-
tion of the zeros also appear in the interevent densities.
Bunching becomes more prevalent as the neighborhood of
the two-scale locus is traversed in the direction of increasing
F, the interevent densities broaden and eventually become
bimodal, these peaks being characteristic of the intra- and
intercluster intervals. This can be contrasted with, for ex-
ample, the results of �9�, where the interevent densities are
unimodal precisely because the correlation function consid-
ered was appropriate for a perfectly smooth process. For the
modified Gaussian and LCR autocorrelation models, which
are exponentially bounded, the interevent densities have ex-
ponential tails irrespective of whether clustering occurs. The
last autocorrelation model considered was for a single scale
but with power-law asymptote. No clustering can occur for
this model. The autocorrelation function for the zeros decays
very slowly in this instance but the asymptotic behavior of
the interevent densities remains exponential unless ��1,
whereupon it becomes a stretched exponential �41,42�.

All the processes treated in this paper are at least once
differentiable and so possess a degree of “smoothness”. This
is not true of fractal processes that have autocorrelation func-
tion with expansion

���� = 1 − a�2
 + ¯

close to the origin. The trace of these objects has an inverse
cascade, revealing successively more detail at finer scales but
without being resolved through magnification. The zeros
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FIG. 7. �Color online� �a� Normalized autocorrelation function
C�2� of the zeros of Gaussian processes correlated with �3, plotted
as a function of the delay time in correlation lengths � /L. The
circles, squares, and diamonds correspond to values of � equal to
0.8, 1.305, and 4.113, respectively. In �b�, the normalized interevent
densities of the zeros of the Gaussian process are shown, where the
symbols correspond to the same values of � as in �a�. The densities
have been scaled so that they may be distinguished. All figures are
simulated with L=10 and averaged over 1.5	106 realizations.

SMITH, HOPCRAFT, AND JAKEMAN PHYSICAL REVIEW E 77, 031112 �2008�

031112-10



group in clusters, there being an infinite number in any clus-
ter. The Fano factor for these processes is infinite and the
distribution for the number of zeros has a power-law tail,
p�N��1 /N1+
 �50�, which is one of the discrete stable dis-
tributions. The interval density for these has a power-law
form for small intervals, but retains the exponential tail �51�.
Fractal processes therefore display the least complex but
most marked departures from the behaviors described in this
paper. Their properties are listed in the first row of Table I, in
order to complete the picture.

It is surprising, perhaps, that the occurrence of Poisson
distributed zeros is the exception rather than the norm, oc-
curring in the 
-b space on the contours where F=1. Note
however that realizations of these never form a Poisson pro-
cess, which is an uncorrelated series of events with indepen-
dent, exponentially distributed intervals. This should be con-
trasted with distributions for the number of extrema or
crossings at a high level �38�, which have been shown to be
asymptotically Poisson distributed. However, this description
obscures a more complex behavior, whereby the crossings
evolve as pairs of events, and this will be treated fully else-
where where modifications due to the continuous process
being non-Gaussian will also be discussed.

When the interval T is small compared with the charac-
teristic scale length L, the distribution of zeros should osten-
sibly become binomial since a zero either occurs in a short
interval, or does not. However, even though the mean and
second moment vanish in this limit, �N�N−1�� does not scale
as �N�2 and so the distribution of zeros cannot be described
by a scaling distribution �52�. This implies that the zeros
cannot be exactly binomial in this limit, because the bino-
mial distribution is an example of a scaling distribution. In
the large T limit, all the limiting forms of the distributions of
N are examples of scaling distributions. Therefore, there is
an evolution from nonscaling to scaling distributions as T

increases. A determination of the way by which this change
occurs would be a fruitful area for further study.

Despite their specificity, the autocorrelation functions
adopted in this paper provide sufficiently generic models
with which to qualitatively identify and understand the
trends that result from more complex situations. For ex-
ample, the greater the number of distinct scale sizes, the
more modulation will occur between the clusters of zeros,
leading to a hierarchy of clustering. Within the smallest clus-
ter size, the smoothness of the continuous process dictates
whether the zeros are well separated or incipiently bunched.
This picture will become clouded if the continuous process is
non-Gaussian, for then the higher order correlation proper-
ties are not prescribed in terms of the lowest order autocor-
relation function alone. Hence the zeros will be affected by a
parameter space of higher dimension. Significant modelling
and interpretive challenges are presented if the continuous
process is nonstationary. Some inroads can be made by as-
suming stationary increments, enabling models to be con-
structed for the structure function rather than the autocorre-
lation function. Further complexity and richness of behaviors
will result from a consideration of �Gaussian or otherwise�
random fields �e.g. �53� and references therein�, where the
nature of the stationary points have implications for vector
properties of the processes that the fields represent.
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APPENDIX

This appendix gives expressions for the power spectra of
the three correlation models used. These power spectra must

TABLE I. Summary of the behavior of the zeros of Gaussian processes correlated with either fractal, subfractal, or power-law autocor-
relation functions. Detail is provided of the distribution of the zeros, their interevent densities, and their autocorrelation functions.
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be positive definite functions and this constrains the values
of the parameters that are used in the models for �1 and �2.
Because the autocorrelation functions used are real-valued
and symmetric, the power spectrum is the Fourier-cosine
transform of autocorrelation function:

�̄��� = 2
0

�

��t�cos��t�dt

These can be evaluated in terms of tabulated functions to
give

�1̄���
L

= �1/2exp�− �L�

2

2�

+ 2�
+2�/2b��3 + 


2

1F1�3 + 


2
,
1

2
;−

1

2
�L��2� ,

where � is the gamma function �54� and 1F1 the confluent
hypergeometric function �55�,

�2̄���
L

= 2�1 + �L��2�−2 + b��3 + 
��1 + �L��2�−�3+
�/2

	cos��3 + 
�arctan�L�����

and if b�0 there is always some value of � for which these
two power spectra are negative, as can be readily verified
using graphical methods. By contrast,

�3̄���
L

=
2�3−��/2�1/2���+1�/4

���/2�
�L������−1�/2K��−1�/2�L����1/2� ,

where K� is a modified Bessel function �55�, and this func-
tion is positive definite for all values of its parameters.
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